

[robotlegs]

for Actionscript 3

About Me

Paul Robertson
Robotlegs Enthusiast

on the web
http://probertson.com

@probertson

email
paul@probertson.com

Who Started Robotlegs?

Shaun Smith
Robotlegs Inventor

find him
http://shaun.boyblack.co.za

@darscan

Not to mention...

Till Schneidereit
SwiftSuspenders Maestro

find him

@tschneidereit

http://tillschneidereit.de/

And...

Joel Hooks
Robotlegs Enthusiast

on the web
http://www.joelhooks.com

@jhooks

email
joelhooks@gmail.com

Contributors	

Robert Penner @robPenner

Sean Hess @seanhess

Jonnie Hallman @DestroyToday

Craig Wickesser @codecraig

and so many others have contributed to the community
through support, ideas, and examples...

What is Robotlegs?

a pure Actionscript 3 micro-architecture

What is Robotlegs?

a pure Actionscript 3 micro-architecture
robotlegs has no Flex framework dependencies.

Why Robotlegs?

flash, flex, and air

What is Robotlegs?

a mechanism for wiring objects together

What is Robotlegs?

a mechanism for wiring objects together
focused solely on this limited scope

Why Robotlegs?

lightweight

equipped with MVCS reference implementation

equipped with MVCS reference implementation
but...

Why Robotlegs?

whatever you need it to be

Why Robotlegs?

whatever you need it to be
highly extensible to support YOUR workflow and style

Why Robotlegs?

full modular support

Why Robotlegs?

supports your workflow

Why Robotlegs?

peer reviewed

Why Robotlegs?

well documented

Why Robotlegs?

transparent development

Why Robotlegs?

stable

Why Robotlegs?

welcoming community

Why Robotlegs?

knowledge.robotlegs.org

supported through Tender

What does Robotlegs do for you?

removes framework pain

What does Robotlegs do for you?

allows you to focus on your app

What does Robotlegs do for you?

allows you to focus on your app
not the framework

What does Robotlegs do for you?

fights carpel tunnel

What does Robotlegs do for you?

lets you move fast

What does Robotlegs do for you?

automated dependency injection

what is “automated dependency injection”?

what is “dependency injection”?

what is “dependency injection”?
Give an object something that it needs

myList.dataProvider = myArray;

what is “dependency injection”?
Give an object something that it needs

var url:URLRequest = new URLRequest(“http://robotlegs.org/");

what is “dependency injection”?
Give an object something that it needs

var url:URLRequest = new URLRequest(“http://robotlegs.org/");

var loader:URLLoader = new URLLoader();
loader.load(url);

What does Robotlegs do for you?

automated dependency injection
[Inject]

What does Robotlegs do for you?

automated dependency injection
Have you ever written code like this*?

// in Main.as:
private var _widgetData:WidgetData = new WidgetData();
component1.widgetData = _widgetData;

// in Component1.as
public function set widgetData(value:WidgetData):void
{
 _widgetData = value;
 component2.widgetData = _widgetData;
 component3.widgetData = _widgetData;
}

// in Component2.as, Component3.as
// etc.

*adapted from http://probertson.com/projects/run-air-sqlite-query-testing-tool/

What does Robotlegs do for you?

automated dependency injection
Wouldnʼt you rather write this?

// in MainMediator.as:
[Inject]
public var widgetData:WidgetData;

// in Component1.as:
[Inject]
public var widgetData:WidgetData;

// in Component2.as, Component3.as, etc.:
[Inject]
public var widgetData:WidgetData;

What does Robotlegs do for you?

automated dependency injection
promotes clean code

What does Robotlegs do for you?

automated dependency injection
promotes clean code

clean code is easier to test

What does Robotlegs do for you?

automated dependency injection
promotes clean code

clean code is easier to refactor

What does Robotlegs do for you?

automated dependency injection
promotes clean code
clean code is easier to understand

What does Robotlegs do for you?

even if you don't test your code,
you should WRITE testable code

What does Robotlegs do for you?

Robotlegs wants to help

even if you don't test your code,
you should WRITE testable code

What does Robotlegs do for you?

objects communicate via native events

What does Robotlegs do for you?

objects communicate via native events
custom events with strongly typed properties

Collaborative Development

github.com/robotlegs

github makes it easy!

Collaborative Development

comments, criticism, and ideas welcome

Collaborative Development

fork the framework

Collaborative Development

create examples and utilities

Collaborative Development

create an alternative implementation

Where to Start?

MVCS reference implementation
inspired by PureMVC

Robotlegs MVCS Implementation

MVCS Implementation

MVCS is not the framework

MVCS Implementation

what does that mean?

MVCS Implementation

it is an implementation of Robotlegs

MVCS Implementation

it is an implementation of Robotlegs
a place to start

MVCS Implementation

it is an implementation of Robotlegs
a place to start

get a feel for the possibilities

MVCS Implementation

it is an implementation of Robotlegs
a place to start

get a feel for the possibilities
donʼt let it wall you in

Robotlegs in Action

File reader

Context

Context initializes the framework

Context

package simple
{
 import org.robotlegs.mvcs.Context;

 public class SimpleContext extends Context
 {
 override public function startup():void
 {
 }
 }
}

<fx:Declarations>
 <simple:SimpleContext contextView="{this}"/>
</fx:Declarations>

Context

Context provides an event bus

Context Event Dispatcher Routes Events

Typical Flow of Events in Robotlegs

User Performs an Action (button click)

1. Create event class
2. Add to button:
click="dispatchEvent(new SimpleAppEvent(SimpleAppEvent.CHOOSE_FILE));"

View Component Dispatches Event to Mediator

1. Create mediator

2. Create view <-> mediator mapping in context
mediatorMap.mapView(ButtonContainer, ButtonContainerMediator);

3. Register for view event in mediator
addViewListener(SimpleAppEvent.CHOOSE_FILE, chooseFileHandler, SimpleAppEvent);

Mediator Dispatches Event that Triggers Command

 1. Create command class

 2. Create event <-> command mapping in context
commandMap.mapEvent(SimpleAppEvent.CHOOSE_FILE, ChooseFileCommand, SimpleAppEvent);

Command calls a Method on a Service

1. Create service interface
function promptToChooseFile():void;

2. Inject service into command
[Inject]
public var fileService:IFileService;

3. Call service in execute() method
fileService.promptToChooseFile();

Oh yeah:
4. Create service implementation

5. Create interface <-> service mapping in context
injector.mapSingletonOf(IFileService, FileService);

Service Makes External call and Parses Data

Service Updates the Model (directly or via Command)

1. Create event class with
 service result payload

2. Dispatch event from service
dispatch(new FileResultEvent(FileResultEvent.FILE_RESULT, _file.name, _file.nativePath));

3. Repeat steps for creating a command

Model dispatches Event that Mediator listens for

1. Model dispatches change event
dispatch(new SimpleModelEvent
 (SimpleModelEvent.FILE_NAME_CHANGE, _fileName));

 2. Mediator registers listener for event
 - Create Mediator
 - Define listeners in mediator
 - Map view to mediator in context

Mediator Updates View with Current Data
1. Create public api on view
public function setFileName(name:String):void
{
 fileName.text = name;
}

public function setFilePath(path:String):void
{
 filePath.text = path;
}

2. Inject view into mediator

[Inject]
public var view:TextContainer;

3. Call api from mediator

view.setFileName(event.value);
view.setFilePath(event.value);

View

the View is represented by your
view components and their Mediators

View

Mediators provide API for view components

View

Mediators provide API for view components
to keep the framework out

Mediators Access View Component APIs

View

Mediators listen for view component events

Mediators Listen to View Components

View

Mediators listen for framework events

Mediators Listen for Events

View

Mediators dispatch framework events

Mediators Dispatch Events

View

view components are not coupled to
their Mediators

View

view components are not coupled to
their Mediators

or any other framework class

View

view components are not coupled to
their Mediators

or any other framework class
period.

View

Mediators are coupled to their
view components

View

Mediators can access
Service and Model classes directly

View

Mediators can access
Service and Model classes directly

but this will couple the Mediator to the Actor

Accessing Models and Services from Mediators

(tread carefully)

Actor

Actor is the base class for
Model and Service classes

Models and Services Extend Actor

Actor

eventDispatcher is injected
into Actor

Actor

Actor provides a dispatch(event) method

Actor

Actor is for your convenience

Model

Models extend Actor

Model

Models provide an API for data

Model

Models sit between application data
and other actors

Model

Models should not
listen for framework events

Model

Models dispatch framework events

Models Dispatch Events

Service

Services extend Actor

Service

Services usually implement an interface

Service

Services communicate with the outside world
and provide an API to external services

Service

Services can parse results
from external services

Service

Services can parse results
from external services

foreign data should be converted at the first opportunity

Service

Services do not store data

Service

Services do not store data
data is stored on a Model

Service

Services do not
receive framework events

Service

Services dispatch framework events

Services Dispatch Events

Controller

represented by the Command class

Controller

Commands are executed in response
to framework events

Controllers Executed by Events

Controller

Commands are stateless

Controller

Commands are stateless
they execute and die

Controller

Commands are stateless
they execute and die

performing a single unit of work

Controller

Commands perform work on
Service and Model classes

and dispatch events (call other commands)

Controller

Commands perform work on
Service and Model classes

and dispatch events (call other commands)
sometimes they manage mappings (context commands)

Controller

Commands receive data from the
events that trigger them

Controller

Commands dispatch framework events

Controller Dispatches Events

Controller

Commands do not receive framework events

Controller

Commands do not receive framework events
outside of the event that triggers them

Controller

Commands do not receive framework events
outside of the event that triggers them

which is available for injection

Robotlegs MVCS

www.robotlegs.org
download the framework

best practices documentation
project on github

FAQ and Knowledge Base
live examples

Questions?

