
1

My background:
I worked for several years as a web application developer (server side as well as UI). I
studied the types of security techniques that are important for that domain. However, once I
started working in AIR I learned that there is another set of potential concerns, and another
set of solutions to learn.

In particular, I was working on the documentation for the encrypted database functionality
that was added in AIR 1 5 and I found myself questioning a lot of my previous assumptionsthat was added in AIR 1.5 and I found myself questioning a lot of my previous assumptions
about how to keep data secure and even what it means for an application to be “secure.”
That led to conversations with engineers from the AIR and Adobe secure software
teams…which led me to this presentation, as a way to compile the things I had learned and
share them with others.

2

Since I work on the AIR documentation team, I know that my colleagues and I don’t
intentionally “keep secrets.” As much as time permits, we try to put the best information we
can in the documentation.
Because of this, most of what I’m going to tell you is available in the documentation (or will
be the next time we release an update).

In addition, one resource that was particularly valuable to me in preparing this presentation
is Ethan Malasky and Peleus Uhley’s MAX 2008 session “Maintaining security with Adobeis Ethan Malasky and Peleus Uhley s MAX 2008 session Maintaining security with Adobe
AIR.”

3

4

This presentation is intended to cover AIR-specific functionality and privacy/security issues.
There are some aspects of security that are important in AIR, and are also important in
browser-based Flex applications. For example, in order to keep network communication
secure, you should encrypt communication using SSL/TLS (i.e. https:// urls). This is true in
AIR, but it’s also true in Flex and in any browser-based application, so in the interest of time
I won’t cover that type of information here.

The format I’ve chosen for the presentation is a “problem-and-solution” format We’ll goThe format I ve chosen for the presentation is a problem and solution format. We ll go
through a sequence of problems that potentially expose data privacy and security risks,
then talk about the solutions that are available in Adobe AIR to work around or defend
against those risks.

5

As general background, and by way of comparison, I want to talk briefly about the Flash Player
security model Flash Player has a security model based on the idea of security sandboxes (Thissecurity model. Flash Player has a security model based on the idea of security sandboxes. (This
model is common among web browsers and browser plug-ins.)

The idea of browser security sandboxes is that any executable code that comes from a network
source runs within its own security sandbox. The code can’t access information about the user’s
computer. It also can’t access code or data from remote sources other than its own sandbox.

(Examples: accessing local files; full-screen mode restrictions (user-triggered and esc))

For example, as of Flash Player 10 you can build an application that allows a user to select a file
from the machine’s hard drive and your application can access the contents of that file. However,
your application can’t arbitrarily select and open a file – the user must explicitly choose the file to
open every time you open a file. Once the file is open, you don’t have access to any information
about the file other than its original file name – you can’t learn where it came from, or anything about
the file structure of the user’s machine.

Opening a file is one of several operations that are available in Flash Player but can only be triggered
by a user action that is the code that performs one of these operations must always be triggered byby a user action – that is, the code that performs one of these operations must always be triggered by
some sort of explicit user action such as clicking a mouse button or pressing a key on the keyboard.

Another example of Flash Player security restriction is Flash Player’s full screen mode. You can have
your app open full screen, but the action of going to full screen must be triggered by a user action. In
addition, for several seconds while going to full-screen mode, a note appears indicating to the user
that pressing the <esc> key allows them to exit full-screen mode. Finally, most keyboard input isn’t
allowed in full-screen mode.

These restrictions are very important. When you click on a link or type in a url you don’t know what
you’re going to come across. It should not be possible for code from a web site to cause damage to
your computer or access private data without your explicit consent.

6

AIR design philosophy:
AIR apps, on the other hand, are different from web pages in a browser. In order to run an
AIR app, you must explicitly opt in by choosing to install the application. Consequently, AIR
apps are able to perform lots of actions that aren’t available to Flash Player, browsers, etc.
For example, any AIR app can delete every file from your hard drive (at least, every file that
you have access to). (Note that this is no different than any other executable application
that a user can install on his/her computer.)

The AIR runtime isn’t intentionally designed to be “insecure.” However, end-user security is
not generally a reason that particular functionality is excluded from AIR. As Oliver Goldman,
lead engineer for Adobe AIR states on his blog:
“AIR applications are desktop applications and can already do dangerous things. It doesn't
make sense for us to limit new features that aren't any more dangerous. We do design
features to default to safe behaviors, but we don't reject features just because they might be
d ”dangerous.”

There are exceptions to the rule that content executing in AIR has full system access. A
general way of describing the exceptions is that when AIR is functioning like a browser, it
behaves like a browser – the content is sandboxed like browser content.
(examples: SWF-in-HTML; remote or non-application content)
I’ll di hi i d il l i h iI’ll discuss this in more detail later in the presentation.

7

Here is a visual representation of the “security spectrum” – the levels of access that
executable content have, and the user opt-in requirements corresponding to that level of
access.

8

“Privacy is overrated”
That’s probably overstating things a bit =)
However, it’s definitely true that not every application needs the utmost level of privacy and security
for the content it creates/manipulates/stores.

For example, many users create documents in MS Word or Excel. Normally these documents aren’t
encrypted in any way. The Word and Excel file formats are well-known and it’s very easy to find
tutorials online that teach how to write code that reads those file formats. (In fact, Microsoft gives
away an SDK that makes it very simple for developers to create applications that read those files, not y y p p pp ,
to mention giving them lots of other control over MS Office apps.)

But that’s perfectly okay, because most of the documents created in Word and Excel don’t need to be
encrypted – they don’t contain any private or secret information that couldn’t be shared with others.

Similarly, Adobe Photoshop can open a number of image format files, but doesn’t encrypt them in
any way. A number of other applications can also open Photoshop’s native file format (.psd), either
b th d l id t li th f t f Ad b i l i d th filbecause the developers paid to license the format from Adobe, or simply reverse-engineered the file
format. In fact, for some time (I’m not sure if this is still true now) digital camera manufacturers did
not document or license their proprietary file formats. Nevertheless, Adobe software was able to open
the files. How? Adobe engineers simply reverse-engineered the proprietary file formats every time a
new camera came out. Again, the camera manufacturers didn’t help Adobe, but they didn’t use any
encryption to hide the image data either, because they knew that for most use cases the images
don’t need to be kept “secret.”

Whenever you’re designing an application you need to carefully consider the goals and uses of yourWhenever you’re designing an application, you need to carefully consider the goals and uses of your
application in deciding how much and what kind of data privacy you need to provide.

9

An important step in deciding what level of privacy your application needs is figuring out who should, and more
importantly who shouldn’t have access to the data The answer to those questions defines what “data privacyimportantly who shouldn t, have access to the data. The answer to those questions defines what data privacy
and security” actually means for your application.

For a more detailed description of some of these scenarios, see the link titled “Considerations for using
encryption with a database” (that section of the documentation is about encrypted databases, but the principles
can be applied to general data privacy concerns.)

The first bullet describes what is perhaps the most restrictive scenario – where a user is storing private data and
nobody else – even others who can access the machine, or others who have access to your application, should y y pp
be able to access the data.

Another scenario is where it’s okay for anyone who has a copy of your app to view the data, but you want to
prevent anyone else from accessing it.

One set of users to keep in mind is the hypothetical “disgruntled IT employee” – someone who has
“administrator” access to the machine so they can access all users’ files and data, and can even impersonate
other users’ accounts and pretend to be that user.

One category that I didn’t think much about at first was keeping data private from the end users themselves.
After all, if they own the app, they own the data, right? Not always…
(example: Video rental app, where users might want to circumvent data security measures in order to be able to
access content outside of the app’s restrictions.)

This category is where AIR’s security measures are weakest. In all other cases the end user is motivated to
support the goal of keeping data private, or at least has no interest either way. But in this case, the user has a
motivation to break the security of the application and may actively use attack techniques to do so At this pointmotivation to break the security of the application and may actively use attack techniques to do so. At this point,
the security techniques available in AIR are not suitable for protecting against this kind of attack (at least, not by
itself). You can use AIR in conjunction with FMRMS in order to implement a DRM solution.

10

By way of background, I just wanted to cover encryption and specifically these two types
i it’ t i th t ill b d th h t th t tisince it’s a topic that will be used throughout the presentation.

One-way encryption is a technique where you use an algorithm to create a mangled version
of content. These algorithms are usually designed so that very similar inputs actually result
in significantly different output. There is no corresponding algorithm that allows you to un-
mangle the content (i.e. retrieve the original content from the encrypted version). Because
of this, one-way encryption is only useful for validating data. For example, if you have an
application where a user enters a password to log in you can use one-way encryption toapplication where a user enters a password to log in, you can use one-way encryption to
“hash” the user’s password before storing it. That way you aren’t actually storing the user’s
password in plain text, so even if someone was able to access the stored password, they
couldn’t figure out what it is. When the user attempts to log in, you simply hash the
password they enter and compare it to the stored hash. If the two hashes match you know
they entered the password correctly.

Two-way encryption mangles the content but also provides a way to retrieve the original y yp g p y g
content. Generally the algorithms that are used for two-way encryption require you to
specify an encryption key that is essentially a password for the encrypted content – in order
to decrypt the content, you pass the same encryption key to the decrypting algorithm, and it
uses the key to unscramble your content.

In some cases the encrypting and decrypting keys are identical; in others there are two
keys known as a public key and a private key, and the pair of keys work together – content

d i h k b d d i h h k d iencrypted with one key can be decrypted using the other key, and vice-versa.

11

This may seem obvious, but I just wanted to get these out in the open so we know what
we’re trying to prevent.

12

It’s pretty much a cliché but it deserves to be said.

13

For example, if you are using a user-entered password to generate an encryption key,
consider imposing minimum length and complexity restrictions on passwords. A short
password that uses only basic characters can be guessed quickly.

14

As I alluded to earlier, when you’re designing for security you have to always keep in mind
that the operating system will let more than one user log in to a machine.

Unless you know for certain that your users are the only people with access to their
machines, you may need to assume that others can access the machine as “guest” or even
perhaps as “administrator” and access other users’ data.

15

An AIR application executes with the access permissions and privileges of the user who
runs the app. If the user has permission to read data from a certain folder, the AIR app can
read data from that folder. Likewise, if an AIR app writes private data into a location where
only the user has access (such as their “documents” or “application storage” directories)
then other users who don’t have access to those areas won’t be able to access that data.

However, this protection is fairly limited. It protects against other users who don’t have
access to the files but doesn’t protect against “admin” users and doesn’t protect againstaccess to the files, but doesn t protect against admin users and doesn t protect against
malicious apps that are running with the user’s permissions.

The folder names for application storage directories look random at first glance. Practically
speaking, however, the application storage directory is not obfuscated in any meaningful
way. Other AIR apps, or any other app, could enumerate folder and file names easily
enough.

16

A .air file is just a zip file – you can change the extension to .zip and open it using any ZIP
file extractor.

Once the AIR application is installed, the unzipped source code is placed in the application
directory. For HTML/JS applications, this means the HTML and JavaScript files. For a Flex-
or Flash-based AIR app, this means the SWF file, which can be easily decompiled.

Demos: view HTML app source; decompile a SWF

17

18

19

One key part of the Adobe AIR “experience” is making it straightforward to download and
install applications. AIR applications come as .air files, which can install on any supported
operating system (developers don’t need to create OS-specific installers). Using the “badge
installation” technique, a user can install your application in as little as two clicks.

20

The flip side to this simplicity is the question of user trust.

When a user downloads an AIR application from the Internet, the user has to make a
decision as to whether to install the application. This is essentially a decision of trust – first
of all do they trust that the .air file actually comes from who they think it comes from, and
second do they in fact trust that person or company to not do anything bad to them.

21

To assist the user in making a trust decision, the AIR runtime requires all AIR apps to be signed with a code-signing
certificate. This potentially provides two forms of reassurance to the user.p y p

When downloading any file including an AIR application, you are at risk from attacks such as a “man in the middle” attack
where an attacker computer intercepts communication between your machine and the server, potentially altering the server’s
response before it gets to you without you realizing that you’re not communicating directly with the server.

How does AIR attempt to protect users from this? First, when a .air file is created, part of the package includes a digest
(hash) of the file’s contents. That hash is created using the code-signing certificate. The public key of the certificate is
included in the .air file bundle. While installing an AIR application, the AIR runtime validates the contents of the .air file by re-
creating the hash using the certificate key that’s embedded in the .air file. If the digest matches, AIR can guarantee to the
end user that the bits haven’t been altered since the application was signed. That way, the user can trust that the application
hasn’t been modified by some third party in transit.as bee od ed by so e d pa y a s

An important related note that should be pointed out is that AIR only validates the code at installation time, not each time the
application runs. In other words, if after the application is installed someone is able to replace the SWF file with another one,
when the user runs that app it will execute the replacement SWF file and not yours. Likewise, if you include supporting files in
the .air bundle such as images, XML configuration files, etc., anyone who has access to the installation directory is able to
modify or replace those files and alter your application’s behavior. If the application files have been tampered with after the
app is installed, AIR won’t prevent the application from running.

Why doesn’t AIR validate the installed files every time?
1) Performance reasons – it takes time to hash and validate those files, and while that’s acceptable for the installation

it’ t t bl f h ti th li tiprocess it’s not acceptable for each time the application runs.
2) This is actually an issue for most applications – once it’s installed you can alter the installed files and there isn’t much

that can be done to stop you.
3) In order to actually alter the files, a user usually needs permission to modify files in the general application installation

location for their operating system (e.g. the “Program Files” directory on Windows, or “/Applications” on OS X). Standard
user accounts don’t have permission to access these areas, so a user must be an administrator on the machine to
make these types of changes. (However, a user can also choose to install an AIR app in other locations, so in that case
the app is subject to the restrictions of the install location.)

4) Even if a user does have permission to access the install location, they would need to actually do something to make
the changes. In other words, they would need to manually modify files/overlay files in the install location, or they would
need to execute some application that makes the changes on their behalf (which could be intentional or could be by
spoofing the user or by a virus) So the user ultimately would need to cooperate (intentionally or unwittingly) in order tospoofing the user or by a virus). So the user ultimately would need to cooperate (intentionally or unwittingly) in order to
accomplish this type of attack. This means that in most cases the user would need to have a reason to tamper with the
app. For an app that stores private data about the user, the user has no motivation to tamper with the app – in fact they
have good reason to *not* tamper with it.

22

The problem is, just guaranteeing that an app hasn’t been modified doesn’t really give
much benefit by itself. An attacker could just as easily take an app, modify its contents, and
re-sign it with another certificate. In that case, the app would still pass the validation step.

23

In order to protect users, they need to know not only that the content wasn’t modified, but
also who the content was actually signed by.

You can create your own code-signing certificate, in which case AIR can’t vouch for you.
You can also buy one from a certificate authority (CA). CAs verify the identity of a company
or individual before issuing a certificate. The certificates they issue are in turn signed by
their own certificate. If your computer recognizes a certificate authority (by having their
certificate already in your computer’s trust store) it trusts that CA and it trusts anybody thatcertificate already in your computer s trust store), it trusts that CA and it trusts anybody that
they trust.

Put another way, it’s like the user’s computer trusts Verisign, and they trust Thawte, and
they trust another authority, who says you really are who you say you are. This is reflected
in the installation dialog for the AIR app.

Note, however, that by issuing a certificate to a company, a CA isn’t making any claims
about whether they can actually be trusted – only that they really are who they say they are.
So you know that my app really comes from Paul Robertson. At that point you as a user
have to decide whether you trust me to not write something that will mess up your computer
or steal your data.

24

This is what you see when AIR can’t establish a chain from an app’s certificate to a trusted
certificate.

25

On the other hand, if a chain of trust is established, the bottom section changes to indicate
that the publisher identity is “verified” and the publisher’s name appears in the top.

And no, there isn’t any way to change the red X that says “system access:
UNRESTRICTED” or to change the yellow “caution” question mark to something else.

26

27

28

Your code has bugs.

When you find a security issue, you don’t automatically have a way of contacting the users
of your application to notify them that they need to install the next version – you just have to
make it available and hope they find out.

29

30

AIR includes an easy and useful update framework, as well as a few more flexible
approaches.

For example, the simplest version already includes all the dialogs you might need, so you
don’t even have to create the UI. You can configure it to make updates optional or not, to let
users choose when to update (or not), etc.

If you add the few lines of code it takes to support updates in your app, then your users will
pull down updates as soon as you make them available.

If you don’t, then when you discover a bug or security issue, you’ll have to rely on users
manually discovering, downloading and installing the update.

31

This is (most of) the code it takes to add update functionality to your application.

The first code block is the ActionScript code you use to initialize the update framework. In
this case, you would also include an XML file (not shown) in your app’s source that defines
which screens you want to show and other options. (You can set those options in code as
well if you’d rather not have them in an XML file.)

The second block is another XML file that you post on your server. To push a new version,
you just upload the .air file and the new version of this XML file.

32

33

While it’s not for everyone, some applications want to incorporate external code. This
commonly takes a couple of forms:

•The app is architected as “modules” that can be downloaded when necessary and
executed in the app
•Third party module or plug-in architecture allows other authors to create functionality that
extends your app

Since AIR is built on web technologies, it’s pretty easy to load external code, user
interfaces, etc., for example using runtime shared libraries or Flex modules. This is a
common pattern in browser-based Flex and Flash applications.

34

However, any time you’re downloading and executing code, you’re subject to the same
risks that were described earlier for AIR applications in general – you need a way to a)
know who the code is actually coming from, and b) validate that the code wasn’t altered in
transit.

To compound the problem, the user doesn’t get to choose whether to install and run the
code – that choice is entirely up to your application – even though the potential risks are
identical (data theft or loss)identical (data theft or loss).

Requesting a module from a particular server isn’t a guarantee of trust.

(Man-in-the-middle and DNS attacks again)

There are several parts to the solution for securely exposing this type of functionality.

35

The first part of the solution is built in to AIR.

Somewhat akin to Flash Player, AIR uses a concept of security sandboxes in determining
what privileges executing code has.

Code that is in the “application directory” (the directory into which AIR installed your
application) runs in what’s known as the Application security sandbox. This code has full
access to all AIR APIs.

Remember that it is possible that the code in the application directory has been modified
since the app was installed (see slide 22 for details.)

All other code (specifically code that runs from other locations such as other folders on a
users hard drive) runs in a non-Application security sandbox and doesn’t have any access
to AIR APIs.

36

There are a few techniques that allow you to “import” code rather than execute it directly. In
theory these techniques could be used to allow you (or an attacker) to circumvent the
security sandbox restrictions. If you were to use one of these techniques and an attacker
managed to get their code in place of yours, their code would run in the application
sandbox.

However, to prevent this risk, all “imported” code runs in a non-Application security
sandbox and doesn’t have access to AIR APIs (It runs as though it is SWF content in asandbox, and doesn t have access to AIR APIs. (It runs as though it is SWF content in a
browser.)

37

There are some cases where you really do want to import code and run it in the application
sandbox.

These override controls are only to be used when you are absolutely positively 150% sure
that the content is safe – that it came from a trusted source (and you can prove it!) and that
it hasn’t been tampered with.

38

Another part of the solution is to require loaded code to be signed. Just as AIR apps are
signed to provide two levels of trust, you can sign modules to get the same trust benefits.

The XMLSignatureValidator API uses the same logic and techniques that are used for
validating an AIR application. You can sign your module code with the same code-signing
certificate you use to sign an AIR app, and then you can check the signature within your
app to determine if you trust the module.

(Note that this still doesn’t automatically give the module application sandbox privileges – it
just gives you a means to decide whether you trust the module code.)

39

The final solution that’s available in AIR is the “sandbox bridge,” which allows you to
expose APIs to code running in a different security sandbox. Using the sandbox bridge,
code running in different security sandboxes can communicate. Both sides must opt in. All
data passed between sandboxes is passed by value so the non-Application sandbox code
isn’t operating on instances in the Application stack.

The top code listing shows how you expose a sandbox bridge in your app. The
parentSandboxBridge property is defined as an Object instance In this case an instance ofparentSandboxBridge property is defined as an Object instance. In this case an instance of
a custom class, MySandboxBridge, is actually assigned to the property so there is a
defined API.

In the second listing, the module accesses the sandbox bridge object and calls a method
and sets a property value.

40

Remember, however, that any objects you pass to the external code can be used as if in
the Application security sandbox. Before exposing any AIR-specific data types, think
carefully about why those data types are AIR only (and expose the functionality in some
other way instead).

For example, if you want to allow modules to store preferences, instead of giving them a
File object to allow them to write preferences to a file, just expose a setPreference() method
that lets them specify preference name and value pairsthat lets them specify preference name and value pairs.

41

42

This technique for storing data is straightforward to use, especially if you have an
application that is already written for the browser or works in both browser and desktop.

However, it doesn’t use any kind of encryption at all, so for any data that you want to keep
private you shouldn’t store it in LSOs.

43

44

The Encrypted Local Store is designed to fill the need for an encrypted alternative to LSOs.

It provides a two-way encryption mechanism designed for storing small secrets, such as
remote credentials. It has a few benefits, including the fact that the values are encrypted
per user and per application (so multiple users on the machine can’t access each others’
data even if they run the same app), and you don’t have to worry about encryption key
creation or storage at all because it’s handled by AIR.

One limitation of working with the ELS is that you store values as ByteArray objects, so
there is some complexity in reading and writing data. In addition, ELS is not designed for
storing large amounts of data and it will have performance problems as the size of data
grows large. Really it’s just designed for small, simple values.

45

One potential area of weakness in the ELS is the problem described on slide 22, that an application’s
t bl d b difi d ft th i i t ll d Th bli h tifi t (d bli h idexecutable code can be modified after the app is installed. The publisher certificate (and publisher id

that is derived from it) are part of what is used for encrypting ELS data. If someone modifies an app
by replacing the installed version with a copy of the app signed with a different certificate, then any
ELS data created by the app after the certificate is replaced is encrypted based on the attacker
certificate rather than the original developer’s certificate.

In that case the attacker still can’t access ELS data stored by the app before the certificate was
replaced but any data written by the application afterward can be accessed So the success of thisreplaced, but any data written by the application afterward can be accessed. So the success of this
type of attack depends on the certificate being replaced before the desired data is written to the ELS.
To defend against this type of attack, store ELS data as soon as possible after the app is installed –
which generally means the first time the app runs. (You don’t necessarily have to store all data – it is
sufficient for example to store an encryption key in the ELS on the first run. Then you can use that
encryption key to encrypt other data later.)

Also note that there are additional steps involved in actually accessing the data, including copying the so ote t at t e e a e add t o a steps o ed actua y access g t e data, c ud g copy g t e
actual ELS data from the folder where it’s stored to the ELS storage location of another attacker app.

As mentioned in the notes to slide 22, this type of attack would require user cooperation (or else
require the user to be tricked e.g. by a virus) in order to succeed. Adding in the fact that the timing of
the attack is critical, it’s highly unlikely that this type of attack can succeed unless the user is a willing
participant in the attack. So for storing user data, or encryption keys used to protect user data, the
ELS is a valuable tool. However, for a DRM or similar scenario where you are protecting data from
the user, it is potentially vulnerable.

46

In order to make the ELS even stronger, you can set a third parameter to true when you’re
setting an ELS value. By using strong binding, the value is encrypted based on the user,
publisher id, *and* additionally based on a hash of the files in the application directory. In
that case, the value can’t be retrieved except by an app with exactly the same source. This
protects the data from certificate replacement, but it also means that when you update your
app you won’t be able to access the value either.

47

48

This is all on one slide because it’s pretty straightforward and obvious.

AIR lets you save data in files. You access the data as raw bytes, so you can structure it in
any way you want. However, any other app can also read the files. They need to be able to
reverse-engineer your data format in order to actually read the files, but it can be done.

The only solution is to encrypt your data (e.g. using two-way encryption) before writing it to
the file, then decrypt it when you read it back.

49

50

The local SQL database functionality makes it easy to store structured, relational data for
your application, in a way that many web developers are familiar with.

As the code example shows, you create and open a SQLConnection instance to connect to
a database, then you use a SQLStatement object to execute SQL commands against that
database.

51

One potential area of attack against an application is a SQL injection attack. This is an
attack that is well-known for web applications as well so web database developers are
probably familiar with it.

The weakness that allows this type of attack is when you concatenate user input into an
SQL command, as in this code example where the text from an text field is added into the
statement.

52

This type of attack is easy to prevent by using statement parameters instead of
concatenation. In this example the statement defines a parameter named “:firstName”, and
the parameter value is set separately. AIR doesn’t just use concatenation to plug in the
parameter values. The binding of the parameter value into the statement happens within
the database engine, so there is no risk of SQL injection.

53

The fact that AIR’s database functionality is easy to use also makes it an easy target. Every
application uses the same database format. Since AIR uses SQLite under the hood, any
application that understands SQLite can read an AIR application’s database. In fact, AIR
includes functionality that lets you introspect a database to discover the table structure etc.

This is good because it means that developers can (and have) created useful tools that
make it easier to create and work with databases in AIR. However, it means that if you’re
storing your app data in a local database that data isn’t privatestoring your app data in a local database, that data isn t private.

54

To protect database data, you can use an encrypted database.

When you create a database by opening a connection, you create it as an encrypted
database by providing a 16-byte encryption key. Later, in order to re-open the database you
must use the same encryption key or you won’t be able to access the data.

(You can also change an encrypted database’s encryption key by calling the reencrypt()
method after connecting to it.)

55

Since you have to provide the encryption key, the biggest complexity with using an
encrypted database is coming up with an encryption key in a way that provides sufficient
security.

(See the documentation for details on the issues around this.)

56

There are a range of techniques for getting an encryption key, and different use cases for
why you might favor one over the other.

While I was working on the encrypted database feature in AIR 1.5, the security engineers I
worked with came up with the following list of steps to follow, which make up the most
secure way to generate an encryption key. Why only focus on the most secure technique?
Because it’s easy to make an application less secure, and harder to make it more secure.
On top of that for any desired level of privacy you can always use the most secureOn top of that, for any desired level of privacy you can always use the most secure
technique to store the data and then share the data in other ways.

57

There’s a lot of complexity in these steps, so I won’t take the time to describe them all. And
if you want to use this technique, you don’t have to implement them all either.

58

In the process of working on the encrypted database feature I wrote an ActionScript class
called the EncryptionKeyGenerator class that performs all those steps for you. The class is
available as part of the as3corelib open source project. A complete example of how to use
it is in the AIR documentation, but the basic steps are shown in this code listing:

1) Create an EncryptionKeyGenerator instance
2) Get a password from the user
3) Pass the password to the EncryptionKeyGenerator instance and it returns the

encryption key.

If you’re interested in understanding how the EncryptionKeyGenerator class works and how
and why each of the steps listed on the previous slide are performed, that information is
also included in the documentation.

Also, even though I’m mentioning the EncryptionKeyGenerator class in the section on
encrypted databases, there’s nothing specific to databases about it – you could use it to
create an encryption key for any kind of two-way encryption.

59

The first question I asked was why not store the encryption key in the ELS, and then read it
out every time. If you’re going to do that you might as well just skip requesting a password
and instead just create a random encryption key and store it in the ELS. However, if you do
that then the data is vulnerable if an administrator impersonates another user account on
the machine and runs the app.

For more details on this and other design decisions involved in the EncryptionKeyGenerator
class see the AIR documentationclass, see the AIR documentation.

60

61

62

