
1

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Adobe AIR SQLite:
An Optimization
Conversation

H. Paul Robertson
ActionScript Developer/Writer
Adobe Systems, Inc.

360|Flex San Jose
August 19, 2008

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Welcome!

Questions – please ask!

My perspective

Your experience – are you ready to share?

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Background and concepts

Synchronous/asynchronous

Transaction

Index

“optimization”

4

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Performance

(application performance)

0

10

20

30

40

50

60

1st Qtr 2nd Qtr 3rd Qtr

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance

Actual performance

vs.

Perceived performance

(is there really a difference?)

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance

Actual performance

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Write faster SQL
Favor JOIN over subquery

Avoid LIKE – especially LIKE (‘%blah%’)

Avoid IN – use AND/OR

Avoid JOINing to the same table multiple times (careful with views)

Avoid needless lookups

Qualify table (and other object) names with database name (usually “main”)

Explicitly specify column names in SELECT and INSERT

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Use (and re-use) prepared statements

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Use (and re-use) prepared statements (bad example)

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Use (and re-use) prepared statements (good example)

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Use transactions for batch INSERT/UPDATE/DELETE operations

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Use transactions for batch INSERT/UPDATE/DELETE operations

Example: Inserting 85489 rows of data from a CSV file
No explicit transaction: 751510 ms (12.5 minutes)

Explicit transaction: 15662 ms (16 seconds – about 48x faster!)

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Use transactions for batch INSERT/UPDATE/DELETE operations (bad example)

Load data

“Loop”

Finish

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Use transactions for batch INSERT/UPDATE/DELETE operations (good example)

Load data

Begin
transaction

“Loop”

End
transaction

Finish

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Use indexes

…but use them wisely…
Index columns that are used in WHERE clause

Used together – index together

…and/or use analyze()

Used together – index together:
If a subset of the columns of a table are commonly used together in a WHERE
clause and/or retrieved together, combine them in a single index.

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Create table structure before adding data

Create your table structure (tables, views, indexes, and triggers) before adding
data to the database.

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Create table structure before adding data
On-disk, database file uses “pages”

Database file

sqlite_master table1 table2

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Create table structure before adding data
On-disk, database file uses “pages”

sqlite_master table1 table2 table1

Database file

Once the “table1” page fills up, a new page is created and used for additional
table1 data

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Create table structure before adding data
On-disk, database file uses “pages”

sqlite_master table1 table2 table1

Database file

sqlite_master

Like other tables, if you make enough schema changes that the sqlite_master
page fills up, a new page is created for that table. This can negatively impact
the startup time when connecting to a database.

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Actual performance

Create table structure before adding data
On-disk, database file uses “pages”

…or use SQLConnection.compact()

but be careful with autoCompact!

sqlite_master sqlite_master table1 table2table1

Database file

Calling SQLConnection.compact() causes the tables to be rearranged in order.
Note that this can take a notable amount of time, depending on the amount of
data in the database.

Autocompact sounds like it does this, but it only does it partway. It doesn’t
rearrange the tables – it only removes pages that become completely empty
(as data is deleted), shifts them to the end of the database, and deletes them.
This keeps the db file size smaller, but requires more processing at the end of
each commit.

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance

Perceived performance

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Perceived performance

Bottleneck #1:

“Batch” statements
Running multiple statements in sequence, such as a bulk INSERT

Solution:
Use asynchronous execution mode

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Perceived performance

Bottleneck #2:

Large SELECT result set

Solution:
Break it into chunks using execute() with prefetch parameter, and next()

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Application Performance > Perceived performance

Bottleneck #3:

Fast query in the queue behind slow query

Solution:
Use multiple SQLConnection objects (plan carefully and be prepared for errors)

25

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Productivity

(developer productivity)

0

10

20

30

40

50

60

1st Qtr 2nd Qtr 3rd Qtr

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity

Tools

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Tools

Creating/modifying database structure

Christophe Coenraets’ “SQLite Admin”

http://coenraets.org/blog/2008/02/air-based-sqlite-admin-updated-for-beta-3/

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Tools

Prototyping/testing SQL statements #1

Christophe Coenraets’ “SQLite Admin” (again)

http://coenraets.org/blog/2008/02/air-based-sqlite-admin-updated-for-beta-3/

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Tools

Prototyping/testing SQL statements #2

My tools (in progress =)

http://probertson.com/projects/doppler-air-sql-admin-tool/

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity

Application architecture

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Application architecture

Goals:

Minimize duplicate/boilerplate code

Reduce number of event handlers needed for asynchronous execution
Data binding

Abstraction layer

Easily reuse SQLStatement objects

Easily “chain” dependent database operations

Queue up multiple instances of the same statement

Execute multiple independent statements “simultaneously”

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Application architecture

Solution #1: SQLite MXML wrapper classes (Peter Elst)

http://www.peterelst.com/blog/2008/04/07/introduction-to-sqlite-in-adobe-air/

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Application architecture

Solution #2: Data access layer (Brandon Ellis)

http://www.brandonellis.org/?p=49

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Application architecture

Solution #3: asqlib SQL statement generator (Miran Loncaric)

http://code.google.com/p/asqlib/

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Application architecture

Solution #4: “command” classes (me)

http://probertson.com/projects/addressbook/

“Command” class

Define SQL Begin
transaction

Statement 1 Statement 2 End
transaction

Errors Events

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Application architecture

Solution #5: AIR ActiveRecord (Jacob Wright)

http://code.google.com/p/air-activerecord/

http://jacwright.com/blog/79/air-activerecord-is-open-source/

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Application architecture

Solution #6: Cairngorm services (Eric Feminella)

AIRServiceLocator

SQLService

ISQLResponder

SQLStatementHelper

Plus code generation

http://www.ericfeminella.com/blog/2008/06/22/air-cairngorm-20/

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Developer Productivity > Application architecture

Solution #7: Pools (Daniel Rinehart)

http://www.adobe.com/devnet/air/flex/articles/air_sql_operations.html

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

Thanks!

Thanks for listening and sharing!

H. Paul Robertson

http://probertson.com/

®

Copyright 2008 Adobe Systems Incorporated. All rights reserved.

