
1

©2006 Adobe Systems Incorporated. All Rights Reserved.

Introducing
ActionScript 3.0

H. Paul Robertson

ActionScript Developer/Writer

Platform Developer Documentation

Adobe Systems

2

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript: What is it?

3

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 3.0 – What is it?

Programming language used in the Flash Player runtime

Based on ECMA-262 editions 3 and 4 standards (ECMAScript)

ActionScript 3.0 adds:

Numerous built-in object types; Flash Player specific (e.g. display objects,
drawing, loading content)

Event model (based on W3C DOM3 Events specification)

ActionScript 3.0 complies fully with ECMA-262, 3rd edition. In terms of the 4th edition
standard, which is still under development, it complies with the portions of the
standard that were finalized in time, and will be updated to incorporate additional
elements of the standard when it is completed.

4

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 3.0 – What is it?

Major Milestones in ActionScript history:

Ability to do interactive programming: Flash 4 (1999)

ActionScript (1): Flash 5 (2000)

ActionScript 2: Flash MX 2004 (Flash Player 7): (2003)

ActionScript 3: Flex 2/ “Blaze” (Flash CS3 Professional): (2006-7)

5

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 3.0 – What is it?

Design goals for ActionScript 3.0

Improved, consistent programming model

Compliance with industry standards

Performance: 10x greater than ActionScript 2.0

Easy to learn; easy to quickly develop Rich Internet Applications

Type safety – for writing unambiguous, easily maintainable code

Simplicity – intuitive syntax and object model

Compatibility – short migration path (from ActionScript 2.0 and other
languages like JavaScript and Java)

Source: Grossman and Huang (2006) “ActionScript 3.0 overview.”

6

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 3.0 – What is it?

Where is ActionScript 3.0 used?

Any development tool that targets Flash Player runtime (9+)

Currently:

Flex 2:

Free Flex 2 SDK

Flex Builder 2 (nice low academic price)

Flash Professional 9 ActionScript 3.0 Preview:

“alpha” version of Flash 9 – like Flash 8 with ActionScript 3.0 built in

Requires Flash Professional 8 license

Flash CS3 Professional (coming soon)

7

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 2.0 or ActionScript 3.0?

8

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 2.0 or ActionScript 3.0?

Which one should I use for my project? ActionScript 2.0
or ActionScript 3.0?

9

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 2.0 or ActionScript 3.0?

Which one should I use for my project? ActionScript 2.0
or ActionScript 3.0?

“it depends”

10

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 2.0 or ActionScript 3.0?

Which one should I use for my project? ActionScript 2.0
or ActionScript 3.0?

Reasons to use ActionScript 3.0:

Better performance

New functionality

Easier to maintain

11

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 2.0 or ActionScript 3.0?

Which one should I use for my project? ActionScript 2.0
or ActionScript 3.0?

Reasons to use ActionScript 2.0:
Target users only have Flash Player 8 or earlier

Updating existing code/project

Reusing existing code libraries

Too busy to learn ActionScript 3.0

Good news:
Performance improvements (specifically garbage collection
improvements) in Flash Player 8+ even with ActionScript 2.0

ActionScript 2.0 is still being updated when it’s possible (e.g. full screen)

Of course, Flash Player has a lot of mechanisms for updating itself as seamlessly
as possible, so the “old versions” argument isn’t as valid as it used to be.

Naturally, in order to use the new features such as full screen, users must have the
appropriate Flash Player version installed (e.g. Player 9 update 1 for full screen). In
that case you could still use ActionScript 2.0, although you would be targeting Flash
Player 9.

12

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 2.0 or ActionScript 3.0?

Which one should I learn? ActionScript 2.0 or
ActionScript 3.0?

13

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 2.0 or ActionScript 3.0?

Which one should I learn? ActionScript 2.0 or
ActionScript 3.0?

ActionScript 3.0, of course!

14

©2007 Adobe Systems Incorporated. All Rights Reserved.

ActionScript 2.0 or ActionScript 3.0?

Which one should I learn? ActionScript 2.0 or
ActionScript 3.0?

Perception that 3.0 is “more complex” or “only appropriate for
advanced programmers”

The reality – ActionScript 3.0 is:

More consistent

Better organized

Designed to be easy to learn

Paul’s experience: They fixed all the issues that were hard to teach

15

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

16

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Flash Player 9 features (benefits you get automatically)

New Virtual Machine (“AVM2”)

Faster

Better memory management/garbage collection

JIT compiled to native code

// ActionScript 3.0

stop();

...

gotoAndPlay(2);

// ActionScript 3.0

stop();

...

gotoAndPlay(2);

myfile.swf

“ABC”

myfile.swf

“ABC”

ActionScript source
(.fla, .as, etc.)

Compiled SWF
(bytecode)

Flash Player 9

ActionScript
compiler

JIT
compiler

JIT compiling stands for “Just-in-time” compiling.

1. You write your ActionScript code, and compile it using the ActionScript compiler,
which turns it into a SWF file that contains the bytecode version of your program.
(Bytecode is like a programming language that’s optimized for small size and for
being understood by a computer rather than by a human programmer.)

2. When the SWF loads in Flash Player 9 on a particular platform, another compiler
built into Flash Player compiles the bytecode, turning it into native operating system
instructions (as though the program had been specifically compiled for the particular
operating system). Because it’s running as native code rather than being interpreted
step-by-step by the virtual machine, it runs faster.

17

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Flash Player 9 features (benefits you get automatically)

New Virtual Machine (“AVM2”)

Data-type aware

Doesn’t have to figure out data type at runtime

More error messages (this is a good thing)

Example: Calculator (subtraction) ActionScript 2.0 versus ActionScript 3.0

In ActionScript 2.0, you could specify data types at compile time, but that
information didn’t actually persist into the SWF. Flash Player (which actually only
uses ActionScript 1.0) would need to determine the data type of each object as the
program was running.

In ActionScript 3.0, the runtime (Flash Player) knows the data type of each variable,
so it’s able to check that the appropriate data types are being passed around.

For a more in-depth discussion of this, see
http://probertson.com/articles/2005/11/08/actionscript-3-unit-testing-recommended/

18

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Syntax is similar to ActionScript 2.0

A simple timeline script may be similar or identical

stop();

gotoAndPlay(2);

// etc.

stop();

gotoAndPlay(2);

// etc.

19

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Syntax is similar to ActionScript 2.0

Functions, variable declarations, and operators are all identical

function sayHello(name:String):String
{

var result:String;
result = "Hello there, " + name + "!";
return result;

}

function sayHello(name:String):String
{

var result:String;
result = "Hello there, " + name + "!";
return result;

}

20

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Syntax is similar to ActionScript 2.0

Class syntax is very similar

// ActionScript 2.0
public class mypackage.MyClass
{

public function MyClass()
{
}

public function someMethod():Void
{
}

public var someProperty:String;
}

// ActionScript 2.0
public class mypackage.MyClass
{

public function MyClass()
{
}

public function someMethod():Void
{
}

public var someProperty:String;
}

// ActionScript 3.0
package mypackage
{

public class MyClass
{

public function MyClass()
{
}

public function someMethod():void
{
}

public var someProperty:String;
}

}

// ActionScript 3.0
package mypackage
{

public class MyClass
{

public function MyClass()
{
}

public function someMethod():void
{
}

public var someProperty:String;
}

}

Notice the only difference is the way a package is specified:
- In ActionScript 2.0 the package name is prepended to the class name
- In ActionScript 3.0 the package is declared using a separate package block that
surrounds the class block

The only other difference is the capitalization of Void/void

21

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Class hierarchy (“object model”) reorganized

Everything that isn’t part of core ECMAScript is in a package

MovieClip --> flash.display.MovieClip

TextField --> flash.text.TextField

TextField.stylesheet --> flash.text.StyleSheet

flash.filters.DropShadowFilter --> flash.filters.DropShadowFilter

Objects are more organized (grouped according to similar functionality or
purpose)

More future-proof

e.g. Player class

It used to be that a lot of classes were in the “top-level” package – classes such as
MovieClip, TextField, and most of the built-in classes. Now nearly all of them are
organized into a package to separate them from potential conflicting names with
user-defined classes and to make them more organized.

Notice that all the classes that were added in Flash 8 (e.g. flash.filters.*,
flash.display.BitmapData) already conform to this standard.

22

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Class hierarchy (“object model”) reorganized

Good news:
Once you add the (required) import statement, code can be the same

(and import statements are automatic in Flash for built-in classes…but
better to not get used to that!)

// ActionScript 3.0

import flash.display.MovieClip;
import flash.text.TextField;

var childClip:MovieClip;

function resize(tf:TextField):void
{

...
}

// ActionScript 3.0

import flash.display.MovieClip;
import flash.text.TextField;

var childClip:MovieClip;

function resize(tf:TextField):void
{

...
}

// ActionScript 2.0

var childClip:MovieClip;

function resize(tf:TextField):Void
{

...
}

// ActionScript 2.0

var childClip:MovieClip;

function resize(tf:TextField):Void
{

...
}

Notice that aside from the import statements, the ActionScript 2.0 code is nearly
identical to the ActionScript 3.0 code.

23

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Class elements (methods/properties) renamed

Consistent naming conventions

No more “Is it ‘_x’? Or just ‘x’?”

// ActionScript 3.0

myMovieClip.x = 250;
myMovieClip.cacheAsBitmap = true;

myComboBox.x = 400;

// ActionScript 3.0

myMovieClip.x = 250;
myMovieClip.cacheAsBitmap = true;

myComboBox.x = 400;

// ActionScript 2.0

myMovieClip._x = 250;
myMovieClip.cacheAsBitmap = true;

myComboBox.x = 400;

// ActionScript 2.0

myMovieClip._x = 250;
myMovieClip.cacheAsBitmap = true;

myComboBox.x = 400;

It used to be that in order to know whether an object’s property had an underscore
in the name or not, you had to know the history of when the property was added to
ActionScript. Now it’s all consistent – underscores are gone.

24

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New “enumeration” classes for sets of (mutually exclusive) values

No more need to remember all the options

// ActionScript 3.0

stage.scaleMode = StageScaleMode.NO_SCALE;
...
stage.scaleMode = StageScaleMode.SHOW_ALL;

// ActionScript 3.0

stage.scaleMode = StageScaleMode.NO_SCALE;
...
stage.scaleMode = StageScaleMode.SHOW_ALL;

// ActionScript 2.0

Stage.scaleMode = "noScale";
...
Stage.scaleMode = "showAll";

// ActionScript 2.0

Stage.scaleMode = "noScale";
...
Stage.scaleMode = "showAll";

In ActionScript 2.0, you would need to remember (or look up) the possible values for
several properties like Stage.scaleMode.

In ActionScript 3.0, there are many new classes whose sole purpose is to provide
the possible values as constants. You may question why this is a benefit, since it
means you’ll need to remember the class and property names – but with modern
code editors (including Flex Builder 2, Flash, and many others) you can get code
hints that will tell you the possible options, meaning you don’t have to remember.

And, under the hood, those constants that are defined in the enumeration classes
really have the same String (or Number or whatever) values as the original values –
so if you’re migrating code from ActionScript 2.0, you won’t have to worry about
replacing the String values with constants.

25

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Objects reorganized to remove redundancy

Duplicate functionality extracted into separate class (sometimes base class)

e.g. Loading text/XML/variables

26

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Objects reorganized to remove redundancy

Duplicate functionality extracted into separate class (sometimes base class)

ActionScript 2.0: each class has its own methods and properties for
identical functionality: adding variables, sending data, loading data

// ActionScript 2.0
var result:LoadVars = new LoadVars();
result.load("update.php");
// after loading, “result” is populated with loaded variables
...
var myXML:XML = new XML();
myXML.contentType = "text/xml";
myXML.load("update.xml");
// after loading, myXML is populated with the loaded XML

// ActionScript 2.0
var result:LoadVars = new LoadVars();
result.load("update.php");
// after loading, “result” is populated with loaded variables
...
var myXML:XML = new XML();
myXML.contentType = "text/xml";
myXML.load("update.xml");
// after loading, myXML is populated with the loaded XML

27

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Objects reorganized to remove redundancy

Duplicate functionality extracted into separate class (sometimes base class)

ActionScript 3.0: duplicate functions are separated into other classes:
URLRequest, URLVariables, URLLoader

// ActionScript 3.0
var request:URLRequest = new URLRequest("update.php");
var loader:URLLoader = new URLLoader(request);
loader.dataFormat = URLLoaderDataFormat.VARIABLES;
loader.load();
// after loading
var result:URLVariables = loader.data;
...
var request:URLRequest = new URLRequest("update.xml");
request.contentType = "text/xml";
var loader:URLLoader = new URLLoader(request);
loader.dataFormat = URLLoaderDataFormat.TEXT;
loader.load();
// after loading
var myXML:XML = new XML(loader.data);

// ActionScript 3.0
var request:URLRequest = new URLRequest("update.php");
var loader:URLLoader = new URLLoader(request);
loader.dataFormat = URLLoaderDataFormat.VARIABLES;
loader.load();
// after loading
var result:URLVariables = loader.data;
...
var request:URLRequest = new URLRequest("update.xml");
request.contentType = "text/xml";
var loader:URLLoader = new URLLoader(request);
loader.dataFormat = URLLoaderDataFormat.TEXT;
loader.load();
// after loading
var myXML:XML = new XML(loader.data);

Notice that in ActionScript 3.0, the functionality of loading data and communicating
with a server is no longer part of the LoadVars, XML, and other classes. Since the
functonality isn’t related to XML (or variables) per se, it makes sense to just have
separate classes that provide that functionality, and can be used by all the other
classes.

In addition, the URLLoader provides several events, such as start, progress, and
complete, so you can track your data loading as it progresses rather than only
knowing when loading starts and ends.

28

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

29

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 2.0 uses 4 different approaches

30

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 2.0 uses 4 different approaches

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handling code "attached" to objects
on (release)
{

// do something
}

31

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 2.0 uses 4 different approaches

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

32

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 2.0 uses 4 different approaches

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function ()
{

// do something
};
Stage.addListener(stageListener);

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function ()
{

// do something
};
Stage.addListener(stageListener);

33

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 2.0 uses 4 different approaches

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function ()
{

// do something
};
Stage.addListener(stageListener);

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function ()
{

// do something
};
Stage.addListener(stageListener);

// Component events
var listener:Object = new Object();
listener.onChange = function (event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);

// Component events
var listener:Object = new Object();
listener.onChange = function (event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);

34

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 2.0 uses 4 different approaches

And developers often wrote their own!

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function ()
{

// do something
};
Stage.addListener(stageListener);

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function ()
{

// do something
};
Stage.addListener(stageListener);

// Component events
var listener:Object = new Object();
listener.onChange = function (event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);

// Component events
var listener:Object = new Object();
listener.onChange = function (event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);And developers often wrote their own!

35

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 3.0…

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handling code "attached" to objects
on (release)
{

// do something
}

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function ()
{

// do something
};
Stage.addListener(stageListener);

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function ()
{

// do something
};
Stage.addListener(stageListener);

// Component events
var listener:Object = new Object();
listener.onChange = function (event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);

// Component events
var listener:Object = new Object();
listener.onChange = function (event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);

36

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 3.0…
Gets rid of code “attached” to objects

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event handler properties
myButton.onRelease = function ()
{

// do something
};

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function()
{

// do something
};
Stage.addListener(stageListener);

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function()
{

// do something
};
Stage.addListener(stageListener);

// Component events
var listener:Object = new Object();
listener.onChange = function (event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);

// Component events
var listener:Object = new Object();
listener.onChange = function (event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);

37

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 3.0…
Replaces the other various approaches with a single, built-in
event-handling framework

// Event handler properties
myButton.onRelease = function()
{

// do something
};

// Event listeners
var stageListener:Object = new Object();
stageListener.onResize = function()
{

// do something
};
Stage.addListener(stageListener);

// Component events
var listener:Object = new Object();
listener.onChange = function(event:Object)
{

// do something
};
myComboBox.addEventListener("change", listener);

// ActionScript 3.0 Event listeners

function playMovie(event:MouseEvent):void
{

// do something
}
myButton.addEventListener(MouseEvent.CLICK, playMovie);

// ActionScript 3.0 Event listeners

function playMovie(event:MouseEvent):void
{

// do something
}
myButton.addEventListener(MouseEvent.CLICK, playMovie);

38

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

New Event model

ActionScript 3.0…
Replaces the other various approaches with a single, consistent,
built-in event-handling framework

(demo: click to play)

(demo: click to navigate)

(demo: detecting typing)

39

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Display List

A new way of managing visual content

40

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Display list: What is it?

Hierarchical tree of content
elements (“display objects”)

Stage

Main class instance
(the “Main Timeline”)

Display objects

Display object containers

Hierarchical tree of content elements (“display objects”)
Stage: the outermost element that contains all the others
Main class instance: the display object that is immediately contained by the
Stage (the “Main Timeline”). Now known as the “Document class”.
Display objects: objects that represent visual content of some type
Display object containers: display objects that can also hold child content
in their own “child list”

41

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Display list advantages

New classes for better performance:

Sprite: when you want a display object container like a MovieClip, but
don’t need a Timeline

Shape: when you just need a display object (not a container) to use as a
“canvas” for drawing

42

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Display list advantages

MUCH better depth management

No need to keep track of depth numbers

No more “getNextHighestDepth()”

No more worrying that you’ll overwrite existing content

(demo: “add children”)

43

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Display list advantages

ActionScript 2.0: factory methods for screen objects

createEmptyMovieClip() – creates a new, blank movie clip

createTextField() – creates a new, empty text field

ActionScript 3.0: construct an instance like any object

new MovieClip() – creates a new, blank movie clip

new Sprite() – creates a new, blank sprite

new TextField() – creates a new, empty text field

(then call addChild() to add to the display list)

In ActionScript 3.0, you can create display objects using standard constructor
methods rather than factory methods. When you create an instance then you can
use one of the addChild() methods to add it to the display list. You don’t have to add
it immediately – you can have “offlist” display objects; you can remove display
objects from the list without discarding them; and you can “reparent” display objects,
removing them from one container’s child list and moving them to another container.

44

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Display list advantages

ActionScript 2.0: factory methods for screen objects

attachMovie() – attaches a predefined movie clip from the library

ActionScript 3.0: give library symbols a class name, and
construct an instance like any object

new MySymbol() – creates an instance of a predefined movie clip from
the library

(demo: remove children)

In ActionScript 3.0, you can specify a class name for a library symbol. If you want to
specify custom functionality in that class, you can; otherwise it will create an empty
class associated with that library symbol, so you can create new instances using
new MySymbolClass() syntax rather than needing attachMovie()

45

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Better XML handling (E4X)

E4X – the way I expected XML handling to work in the first place

46

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Better XML handling

Example XML:

<?xml version="1.0"?>
<playList>

<name>Classical</name>
<owner>Paul</owner>
<creationDate>2006-09-01</creationDate>
<songs>

<song>
<title>Canon in D</title>
<composer>Pachelbel</composer>

</song>
<song>

<title>Nessun dorma</title>
<composer>Puccini</composer>

</song>
</songs>

</playList>

<?xml version="1.0"?>
<playList>

<name>Classical</name>
<owner>Paul</owner>
<creationDate>2006-09-01</creationDate>
<songs>

<song>
<title>Canon in D</title>
<composer>Pachelbel</composer>

</song>
<song>

<title>Nessun dorma</title>
<composer>Puccini</composer>

</song>
</songs>

</playList>

Consider this sample XML document

47

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Better XML handling

XML DOM approach:

<?xml version="1.0"?>
<playList>

<name>Classical</name>
<owner>Paul</owner>
<creationDate>2006-09-01</creationDate>
<songs>

<song>
<title>Canon in D</title>
<composer>Pachelbel</composer>

</song>
<song>

<title>Nessun dorma</title>
<composer>Puccini</composer>

</song>
</songs>

</playList>

<?xml version="1.0"?>
<playList>

<name>Classical</name>
<owner>Paul</owner>
<creationDate>2006-09-01</creationDate>
<songs>

<song>
<title>Canon in D</title>
<composer>Pachelbel</composer>

</song>
<song>

<title>Nessun dorma</title>
<composer>Puccini</composer>

</song>
</songs>

</playList>

// XML DOM approach
// (assume our XML data is in an object named "myXML")

// get the playlist owner
var rootNode:XMLNode = myXML.firstChild;
var nameNode:XMLNode = rootNode.firstChild;
var ownerNode:XMLNode = nameNode.firstSibling;
var ownerName:String = ownerNode.firstChild.nodeValue;

// get the first song’s title
var songsNode:XMLNode = rootNode.childNodes[3];
var song1Node:XMLNode = songsNode.childNodes[0];
var titleNode:XMLNode = song1Node.firstChild;
var title:String = titleNode.firstChild.nodeValue;

// XML DOM approach
// (assume our XML data is in an object named "myXML")

// get the playlist owner
var rootNode:XMLNode = myXML.firstChild;
var nameNode:XMLNode = rootNode.firstChild;
var ownerNode:XMLNode = nameNode.firstSibling;
var ownerName:String = ownerNode.firstChild.nodeValue;

// get the first song’s title
var songsNode:XMLNode = rootNode.childNodes[3];
var song1Node:XMLNode = songsNode.childNodes[0];
var titleNode:XMLNode = song1Node.firstChild;
var title:String = titleNode.firstChild.nodeValue;

In the ActionScript 2.0 XML DOM approach, you have to use properties like
firstChild, firstSibling, childNodes, and nodeValue to navigate through the XML and
to access the values contained in the node.

48

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Better XML handling

E4X approach:

<?xml version="1.0"?>
<playList>

<name>Classical</name>
<owner>Paul</owner>
<creationDate>2006-09-01</creationDate>
<songs>

<song>
<title>Canon in D</title>
<composer>Pachelbel</composer>

</song>
<song>

<title>Nessun dorma</title>
<composer>Puccini</composer>

</song>
</songs>

</playList>

<?xml version="1.0"?>
<playList>

<name>Classical</name>
<owner>Paul</owner>
<creationDate>2006-09-01</creationDate>
<songs>

<song>
<title>Canon in D</title>
<composer>Pachelbel</composer>

</song>
<song>

<title>Nessun dorma</title>
<composer>Puccini</composer>

</song>
</songs>

</playList>

// E4X approach
// (assume our XML data is in an object named "myXML")

// get the playlist owner
var ownerNode:XMLList = myXML.owner;
var ownerName:String = ownerNode.toString();

// get the first song’s title
var songsList:XMLList = myXML.songs.song;
var titleNode:XMLList = songsList[0].title;
var title:String = titleNode.toString();
// OR
var title:String = myXML..title[0].toString();

// E4X approach
// (assume our XML data is in an object named "myXML")

// get the playlist owner
var ownerNode:XMLList = myXML.owner;
var ownerName:String = ownerNode.toString();

// get the first song’s title
var songsList:XMLList = myXML.songs.song;
var titleNode:XMLList = songsList[0].title;
var title:String = titleNode.toString();
// OR
var title:String = myXML..title[0].toString();

With E4X, you just use node names like property names, so you can “dot down” to a
particular node quickly and easily.

There are two objects you’ll mainly use: XML represents a whole XML document (in
this case it represents the <playList> node); XMLList represents an XML fragment
(e.g. a single child node from an XML document) or a set of nodes.

Rather than treating a plain text value as a separate node, you can just use the
toString() method on a node that only contains a text value, and it will return only
the value without the XML tag wrapper.

If the property (node) you specify contains multiple sibling tags (e.g. the multiple
<song> tags in the <songs> tag), the XMLList object will contain multiple nodes,
which can be accessed using the array access operator [].

You can also use the “double dot” descend accessor operator. This operator will
scan through the child nodes of an XML object and return a set of all the XML
nodes with a name matching the name to the right of the operator. In this case,
every <title> node in myXML is returned by the operator. You can treat this result as
an XMLList, using [] to access particular nodes etc.

49

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

Low-level and improved data manipulation

URLStream

ByteArray

Binary sockets

Dictionary

Regular Expressions

SoundChannel and SoundMixer

TextField: getCharIndexAtPoint(), getFirstCharInParagraph(),
getLineLength(), getLineText()

50

©2007 Adobe Systems Incorporated. All Rights Reserved.

What’s new in ActionScript 3.0?

More details and descriptions
“What’s new in ActionScript 3.0” from Programming ActionScript 3.0

“ActionScript 2.0 Migration” in the ActionScript 3.0 Language Reference

51

©2007 Adobe Systems Incorporated. All Rights Reserved.

Looking forward

52

©2007 Adobe Systems Incorporated. All Rights Reserved.

Looking forward

“Tamarin” open-source AVM
Adobe has released source code for AVM2 to the Mozilla
Foundation

This code will be integrated into a next-generation JavaScript engine in
Firefox (probably Firefox 4.0)

Firefox gets all the nice benefits of AVM2

Adobe gets extra eyes to find bugs and write and review code

Adobe gets good “karma” from sharing code

ActionScript gets good exposure – “the next-generation JavaScript
engine is the current-generation ActionScript engine”

Nice executive summary by Frank Hecker (Mozilla Foundation):
http://www.hecker.org/mozilla/adobe-mozilla-and-tamarin

53

©2007 Adobe Systems Incorporated. All Rights Reserved.

Looking forward

Final ECMAScript edition 4 specification
Even more language features still under consideration:

Type parameters (similar to generics)

Nullable and non-nullable types

Block-scoped variables

Operator overloading

…and much, much more!

Committee Wiki (read-only public version):
http://developer.mozilla.org/es4/

Mailing list:
https://mail.mozilla.org/listinfo/es4-discuss

You can see the proposed additions to the ECMAScript 4th edition specification,
which will tell you what language features will be added into ActionScript once the
specification is finalized.

54

©2007 Adobe Systems Incorporated. All Rights Reserved.

Thanks

H. Paul Robertson

ActionScript Developer/Writer

http://probertson.com/

THANKS!

55

©2007 Adobe Systems Incorporated. All Rights Reserved.

56

©2007 Adobe Systems Incorporated. All Rights Reserved.

References/Resources

Flex 2: http://www.adobe.com/products/flex/

Flash Professional 9 ActionScript 3.0 Preview:
http://labs.adobe.com/technologies/flash9as3preview/

ActionScript Technology Center:
http://www.adobe.com/devnet/actionscript/

“ActionScript 3.0 overview”:
http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html

“Programming ActionScript 3.0”:
http://www.adobe.com/go/programmingAS3

